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An Improved Transformed Unscented FastSLAM
With Adaptive Genetic Resampling

Mingwei Lin

Abstracit—Fast simultaneous localization and mapping
(FastSLAM) is a well-known study for robot navigation. To
enhance the performance of FastSLAM, an improved impor-
tance sampling is proposed in this paper based on the trans-
formed unscented Kalman filter. The improvement is mainly
composed of a novel fuzzy noise estimator, which can ad-
just the state and observation noises online according to
the residual and related covariance, and thus mitigating the
defects caused by model inaccuracy. In general, the Fast-
SLAM algorithm suffers from the impoverishment problem
since it is essentially a particle filter. Inspired by genetic
optimization, an adaptive genetic resampling is proposed
to substitute the conventional resampling step to overcome
these defects. The proposed method, referred to as the im-
proved transformed unscented FastSLAM, is compared with
the unscented FastSLAM and the transformed unscented
FastSLAM. The superiorities of the proposed method are
verified by simulation and experiment under benchmark
environments.

Index Terms—Adaptive genetic algorithm (GA) resam-
pling, FastSLAM, fuzzy noise estimator, particle filter (PF),
simultaneous localization and mapping (SLAM), trans-
formed unscented Kalman filter (TUKF).

[. INTRODUCTION

IMUTANEOUS localization and mapping (SLAM) is a
S well-known solution for robot navigation in unknown en-
vironments. SLAM addresses the problem of building a map
from consecutive environmental features obtained from a mov-
ing robot. Meanwhile, the robot locates itself according to the
map information.

Some basic frameworks, such as the extended Kalman filter
SLAM (EKF-SLAM), unscented Kalman filter SLAM (UKF-
SLAM), and FastSLLAM, have been widely used for the SLAM
applications [1]. Common EKF-SLAM suffers from the compu-
tationally expensive and filter inconsistency problems because
of the linearization of nonlinear models. The UKF-SLAM em-
ploys the unscented transformation to approximate the state
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distribution instead of the linearization operation used in the
EKEF, and thus improving the filter accuracy. However, the most
popular algorithm among these algorithms is the FastSLAM, an
idea from the Rao—Blackwellized particle filter [2], [3]. This is
because it has the reduced computational complexity acquired
by factorizing the full posterior distribution into a product of
landmark distributions and a robot path distribution only with
a complexity of logarithmic scaling regarding the number of
map features. To improve the performance of FastSLAM, many
researchers focus on generating a better proposal distribution,
such as employing the UKF [4], the central difference Kalman
filter (CDKF) [5] and the cubature Kalman filter (CKF) [6] to be
the importance sampling function. However, some drawbacks
contained in these algorithms are inevitable. In the UKF, there
are three scalar scaling parameters that should be well-adjusted.
However, for the CDKEF, it has the similar accuracy compared
with the UKF but with only one adjustive parameter [5]. It has
been approved that the CKF has better stability and accuracy
than the UKF since all the cubature points have the equal con-
stant positive weights without the central sigma points [7]. How-
ever, the CKF has inherent nonlocal sampling problems when
the high dimension state is involved [8]. To address this problem,
a transformed unscented Kalman filter (TUKF) is proposed in
[8]. The weights of its sampling points are the same as those of
cubature points and the radius of the sphere that bounds the new
points does not increase with the state dimension. Moreover, the
TUKEF has better accuracy while the computational efforts are
almost the same as CKF [9]; therefore, the TUKF is selected as
the basis of the importance sampling function in this paper.
Despite the above-mentioned improvements, there exist some
potential problems for the importance of sampling function. The
typical one is the difficulty to acquire the accurate noise statis-
tics of the state and measurement models in real-world appli-
cations; consequently, two models cannot perfectly match with
each other. This inaccuracy leads to the improper measurement
effect of the filter while modifying the predicted results (mea-
surement update); therefore, the filter failure may occur after a
certain running time [10] and the accuracy of the filter cannot be
satisfactory. To solve this problem, some algorithms, such as the
strong tracking filter (STF) [11] and the fuzzy inference system
[12] are proposed to adjust the measurement noise. However,
these two methods only consider the measurement noise effect
on the residual and ignore the influence of process noise. In this
paper, a fuzzy noise estimator (FNE) is proposed in the impor-
tance sampling function to adjust the measurement and process
noises simultaneously. The proposed FNE works by referring
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to the membership functions regarding the residual and related
covariance. Given the proposed fuzzy rules, the FNE has better
estimation accuracy of noise than that of STF [11] and fuzzy
inference system (FIS) [12]. Moreover, the FNE has reduced
computational burdens compared with the method of maximum
posterior and random weighting (MPAW) introduced in [13].

Another way to improve the performance of FastSLAM is
to optimize the resampling steps. Conventional resampling al-
gorithms, including the systematic, stratified, and the residual
resampling [14], [15], suffer from the impoverishment problems
since the large-weight particles are repeatedly selected and the
small-weight particles are deleted after resampling. As a result,
the redundant particles cannot well-approximate the true state.
Particle swarm optimization [16], [17] and a genetic algorithm
(GA) [18], [19] are two commonly-used methods to maintain
the diversity of particles before the resampling step. However,
these intelligent methods generally have two disadvantages. The
first one is that the optimization should be executed every period
even if the algorithm currently has adequate effective particles
without optimization. The second one is the undetermined scalar
parameters, which should be tuned empirically. To solve these
problems, an adaptive genetic resampling is proposed in this
paper. This method utilizes a GA to substitute conventional re-
sampling step; therefore, it is carried out only when the effective
particles are less than the threshold. Furthermore, the crossover
and mutation coefficients are provided according to the distri-
bution of particle weights, in other word, they do not need any
manual tuning.

To further enhance the algorithm, a popular square root fil-
ter with QR decomposition is used in the importance sampling
function [17], [20]. The fused method for the importance sam-
pling is referred to as the improved TUKF (ITUKF). The whole
algorithm of SLAM is named as the ITUFastSLAM.

The rest of this paper is organized as follows. Section II in-
troduces the background of FastSLAM and the sigma points
of TUKF. Section Il demonstrates the proposed fuzzy noise
estimator. Section IV provides the framework of the ITUFast-
SLAM with the adaptive genetic resampling. In Section V, the
simulation and experiment are conducted using the simulator
[21] and datasets collected in Car Park and Victoria Park [22],
respectively. Section VI provides some discussion and draws a
conclusion.

Il. BACKGROUND
A. FastSLAM Problem

From a probabilistic view, SLAM estimates the posterior
probability over the robot path along with the map [2]

p(s', 0] 2 u',n') (1

where the path of the robot is given by s’ = {s;,...,s;}, and
0 denotes the map. Each landmark is denoted by 6, for k =
1, ..., N where N is the number of stationary landmarks pos-
sessed by the robot. 2 = {21, ..., z}and v’ = {uy, ..., w}
are the measurements and controls (or odometry information)
up to time ¢, respectively. n = {ny,...,n;} is the data associ-
ation result in which n; determines the identity of the landmark
observed at time . The factorization idea used in the FastSLAM

is demonstrated as follows [2]:

K
p(s', 0| 2 u' ') =p(s'| 2*,u, n' H (Ok|s', 2", u' nt).
k=1
2)
Each particle m is of the form
[m [m]
Sl = § st 2: NIEDY 3)
1.t K.t

] is the index of the particle (m = 1,2, ...M), s"™
is the mth particle’s path estimate, and p ;(” , and Z[I'("]t are,
respectively, the mean and the covariance of the Gaussian distri-
bution representing the K'th feature location of the mth particle.
According to the FastSLAM 2.0, the robot pose s; is sampled
by [23]

where [m

Sy Np(st|st71’[m],zt,u”,n”) ) 4)

The importance weight w, [ of each particle is given by

(m] target distribution
w =

proposal distribution
P (st,[m] | th ut7 nt)
p (stq,[m] | thlvutfl,nt—l) P (81[:777,]

Stfl,[m]zz‘,’ ut’ nt) '
(&)

The detailed derivation of the importance weights is shown
in [2] and [23]. Finally, a resampling step is executed according
to the computed weights.

B. Sigma Points of TUKF

The TUKEF, which can address the nonlocal sampling problem
inherently while maintaining the virtue of numerical stability for
high dimension problems [8], is selected as the framework of
proposed SLAM algorithm. The TUKF has a better performance
compared with the UKF because it uses a set of sigma points
with equal constant positive weights. The points set used for
calculating sigma points are expressed as

v =", V2L)Lx2L (6)

where v, = (Ve.1,Vk.2,--->..)", L denotes the dimension
of the state, and £ = 1,2,...,2L. The element of ~; is given
by

2r — 1)k
Yk, 2r—1 = \/iCOS <(TL)7T> )

WWZﬂMC%?W> )

where r = 1,2,...,[L/2]. If Lis odd, v 1, = (—1)*. [L/2] is
the greatest integer not exceeding L /2. The L-dimensional ran-
dom variable = with mean & and covariance P, is approximated
by

G =2+ P ®)

in which ;. is the sigma points set.
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[ll. Fuzzy NOISE ESTIMATOR
A. Design of Fuzzy Noise Estimator

In this part, an FNE is introduced to mitigate the imperfect
match between the process and measurement models. The main
function of the proposed FNE is to adjust the noise according
to the residual (sometimes referred to as innovation) and related
covariance of observation. This idea is acquired according to
the fact that the residual should be zero-mean Gaussian white
noise if the filter is operated under perfect models. If the residual
deviates from zero and locates in a small probability region of
probability density function, the noise statistics are possibly
inaccurate. However, it is difficult to formulize the mathematic
relation between this inaccuracy and its possibility. Therefore, a
fuzzy strategy is proposed to judge whether the noise statistics
are accurate.

1) If the residual is nearly zero, the noise statistics are sup-
posed to be accurate.

2) If the residual is greater than zero and the correspond-
ing covariance is small, the noise statistics are deemed
inaccurate and the noise should be decreased.

3) If the residual is smaller than zero and the correspond-
ing covariance is small, the noise statistics are deemed
inaccurate and the noise should be increased.

4) If the conditions are not satisfied with the above-
mentioned three points, the accuracy of noise statistics
are considered difficult to judge and the noise covariance
remains unchanged.

The residual is defined as the difference between the actual
observation z; and the predicted observation Z; at time step t,
and it is given by

re =2 — 2. )

To improve the reliability, the residual and corresponding
covariance are averaged within a time window, respectively,
and they are given by

q q
=Ly P =-% 2
P = 5 Tiyiog, Pri = a Titi—qTt4i—q

i=1 i=1

(10)

where ¢ is the length of the time window. The tuning method of
the noises Q and R is formulized as

R'=(1+M)R, Q =(1+1)Q (11)

where A is calculated according to the aforementioned fuzzy
strategy. Before defuzzification, the convergence of the impor-
tance sampling function (ITUKF) should be proved with the
modified noise covariance, and it is provided in Section III-
B. The proof reveals that the increment of noise covariance
should be positive definite, in other word, A > 0. Therefore, to
satisfy the stability of the filter, in the second point of the afore-
mentioned fuzzy strategy, the noise covariance should remain
unchanged. The fuzzy membership functions are illustrated as
Fig. | where the operator trace (-) denotes the trace of the ma-
trix.

The magnitude of denotation 7} is equal to |7;|, and the sign
of 7} is determined by the sign of elements of residual. If all the

—— NM=Negative Medium
—==NS=Negative Small
- —2Z=Zero
~-=PS=Positive Small
------- PM=Positive Small

= XS=Extra Small
=== S=Small

= = M=Medium
....... L=Large

0.5

Membership Function 1
Membership Function 2

. trace(ﬁr’ )

Fig. 1. Membership functions.

TABLE |
Fuzzy RULE TABLE FOR CALCULATING A

P., XS S M L
7
NM L L S XS
NS M M S XS
Z Z Z Z Z
PS Z Z Z Z
PM Z Z V4 Z

(Note: Z: Zero (0); XS: Extra Small (0.5¢); S: Small (c);
M: Medium (2c¢); L: Large (3c). The Corresponding  is
Given in Brackets Using Letter c).

elements are larger (smaller) than 0, the sign of 7} is positive
(negative). To maintain appropriate robustness and sensitivity of
fuzzy rule, the maximum value of fuzzy intersection is generally
setto 0.5 as shownin Fig. | [10] (0.4-0.7 is acceptable according
to the special demand). For each membership function, three
fuzzy sets are used. According to the outputs of the membership
functions and the aforementioned fuzzy strategy, a fuzzy rule
table (see Table I) is proposed to calculate A.

The scale parameters a, b, and c determine the performance of
proposed fuzzy estimator; therefore, the tuning range of them
should be roughly specified before trial-and-error tests. First
of all, the tuning range of scale parameters must satisfy the
conditions of filter stability; therefore, the lower bound of c is
0. Moreover, the maximum and minimum values of ¢ and b is
obtained over a certain number of repeated tests without FNE,
in other word, the maximum and minimum values of a and
b during the tests are selected as the upper and lower bounds
of their tuning range. As for the parameter c, its upper bound
is obtained under the tests with the FNE using two groups:
first, maximum « and b; second, minimum «a and b. In other
word, the maximum value of ¢ during the test is selected as
the upper bound of its tuning range. According to the obtained
tuning range, different combinations of three scale parameters
are tested as shown in Table 11, which is acquired under 30 Monte
Carlo runs with the initial noise of (0, =0.8m, os = 2.0°,
o, =0.3m/s, o, = 3.0°) and 10 particles. Fig. 2 demonstrates
part of test groups. According to the test result, the group (a =
0.4, b = 1, ¢ = 0.05) has the best accuracy and is used in this
paper. The tuning procedure is a trial-and-error method, which
should be adjusted when used for different systems. In other
word, a different process and measurement models, or different
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TABLE Il
RMSE WITH DIFFERENT SCALE PARAMETERS (UNIT: METER)

Group c
a b 0.02 | 0.05 | 0.08
02051024 | 0.19 | 031
02| 1.0] 025|021 | 035
04 |05] 027 | 023 | 0.33
04101025 | 0.17 | 0.33
0.6 | 051026 | 024 | 0.40
0.6 | 1.0 ] 025 | 0.19 | 0.39

——a=0.2,b=0.5
——a=0.2,b=1.0
0.3 {——a=0.4b=0.5
—+—a=0.4,b=1.0

a=0.6,b=0.5
[[——2a=0.6,b=1.0

0 50 100 150 200 250
Time Step

Fig. 2  Part of RMSE with different scale parameters. (¢ = 0.05).

importance sampling function may correspond to a different
group of “optimal” scale parameters.

B. Stability Analysis of ITUKF

In this part, the stability of the proposed ITUKF, which con-
tains a square root filter and a fuzzy noise estimator, is analyzed
based on the bounded convergence of the conventional UKF
[13], [24]. The square root filter only propagates the covari-
ance of states by Cholesky decomposition, which is used to
avoid truncation error caused by the processing unit and does
not change the value of covariance [20]. Therefore, it does not
affect the convergence of the ITUKF. In the following analysis,
we only analyze the convergence of the improved TUKF com-
bined with the proposed fuzzy noise estimator. The process and
measurement functions are given by

X = f(Xp—1) +wi
Zy = h(Xy) + v

12)
13)

where X, is the state vector at time k, Z), is the measurement
vector, wy, and vy, are the process and measurement noise with
zero-mean and covariance of Q and R, f () denotes the pro-
cess/state function, and h(-) denotes the measurement function.
Define two errors for standard UKF as follows:

X = X — Xp (14)

Xypor = Xp — Xk\kq (15)

where X, and X k|k—1 denote the update and prediction errors,
respectively. Combing the prediction process in the conventional
UKEF [24] and (14), and expanding f (-) by a Taylor series about

X1, the prediction error can be rewritten as

X1 = FeXpo1 + AXpm1) + wy (16)

where F', is the Jacobian matrix of f (-) and A (X _, ) represents
the second and higher-order moments in the Taylor series. To
simplify (18), an unknown time-varying diagonal matrix B, =
diag(B1 ks B2.ks - - - B k) is used [24], and it works by the first-

order linearization. Therefore, (18) can be rewritten as follows:
X1 = BpFeXp—1 + wy. (17

According to (19) and [13], the true prediction covariance can
be rewritten as follows:

Prk\kq =FE [Xklkflf(g\kq
=B Fi Py FLB + APy +Q  (18)

APy = FE B Fie X1 X[ FIBL] — BLF1Prs
F’ [ikT The calculated prediction covariance is given by

Piio1 =B FiPe FLBL + APy + 6Py +Q
=B F:Pr F{ B +Q (19)

where 6Pk\k—1 = Pk\kfl — P2|k71 and Q= APk\kfl +
P11 + Q.

Lemma 1: With the process and measurement functions
given in (14) and (15), the estimation error of the standard
UKEF is bounded in mean square and converged if the following
assumptions hold for each time step [24]:

where

minl SFFL < f2,.1 (20)
R I<HHI <n’ 1 (1)
D < BB < BT (22)
Q < Guaxl (23)
R < ril (24)
GmaxI > Q > Guninl (25)
Puinl = Pp > priaxl (26)

where fll’li117 hmin’ /Bmin ’fmax’ hmax and ﬁmax are nonzero real
Illll’anI'S, Gmax > (jmaxv Gmax>T"min> Pmax and Pmin are positive
real numbers, I denotes the identity matrix, and Hj, denotes the
Jacobian matrix of measurement function. When the process
or measurement noise is inaccurate, condition (25) may not be
satisfied. Even if (25) is satisfied, the filter is also biased from the
minimum covariance [13]. To solve this problem, the proposed
FNE provides a possible solution to improve the stability of the
filter under unknown/inaccurate noise statistics.

Theorem 1: If AQy and ARy, are two positive definite ma-
trixes, the convergence of the proposed ITUKF can be achieved
by adding an appropriate AQ; and ARy, to the modified co-
variance of process and measurement noises, respectively.

Proof: Similar to (19), the prediction covariance of ITUKF
can be expressed as

Pip1 =B FiPr FI B +QF 27)
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where Q* = APpj—1 + 0Py + Q. To achieve the con-
vergence of the ITUKF, an appropriate positive definite matrix
AQj should be added to Q* such that

Q" =Q +AQ, = APy + 0Py + Q+AQ > Q.
(28)
If AQj is selected appropriately, the condition (28) can be
achieved by substituting (28) to (25) of Lemma 1. Similar to
the proof of process noise, the condition (26) can be achieved
using modified measurement noise. This reveals that the con-
vergence/stability of the ITUKF can be achieved by adding an
appropriate AQy, and ARy, to the estimated Q* and R*. The
proof of Theorem 1 is completed.

IV. ITUFASTSLAM

This section provides the implementation of the proposed
algorithm, which contains the importance sampling, feature up-
date, calculation of the importance weights, and the adaptive
GA resampling. Finally, a system diagram is concluded.

A. Importance Sampling

The first step for executing the ITUFastSLAM is to construct
the augmented state vector by adding the mean and covariance
of the process noise. If the mean of the process noise is zero,
the augmented state is provided as follows:

[m] [m]
a|m S — a|m P — O
St[1]: t-1 va5£1] t—1 (29)
0 0 Qi
where sﬂ"f] is the augmented vector, Q,_; is the process noise

variance, and syﬂ and Pgﬂ are the mean and covariance of the
vehicle state at the last time step, respectively. The dimension

afm] .

of s, is n,. Use the Cholesky factorization to decompose the

matrix PtL ! as follows:

M2 = chol (P alm ]) (30)

where the operator chol(-) denotes the Cholesky factorization
which decomposes a positive-definite matrix Pf[/';l] into the
product of (M MI™! and M) denotes its upper tri-

angular matrix. The set of 2n, sigma points are calculated as
follows:

Al = sy (M) =, o,
(31)
where ¢ 1] s the ith vector as introduced in (6)—(8). Each sigma
point Xfﬂ[m] contains the state and the process noise compo-

nents that given by

| [ [ ][m] ]
= u : m] |’ (32)
X 1 [i][m]

The set of sigma points are propagated through the nonlinear
motion model as follows:

)Zl[ftl]f[_ml] _ f (Uf + Xu[?][nL]’XIEil[{n]> ) (33)

Here, Xﬂ[ml] is the transformed sigma point of the state. The

predicted mean of the state is calculated based on the weights
as
2n,

[m i][m]
Stlt-1 ZW Xt|t-1

where W = 1/(2n, ). Executing the Cholesky factorization is
computationally expensive because it contains a set of weighted
deviation e; as shown in (35). Hence, the QR decomposition
is performed on the matrix A = [ejes ... ea,,] to reduce the
computational efforts [20]

e = VW (I = s )i =12

MH;L] L =qr(A) =qrlei e ...

(34)

(35)

(36)

e, |

where ME‘ t] is the predicted factor. The treatment of the mea-

surement is demonstrated in a similar way. If some landmarks

are observed, the data association will provide their identi-
[m]

ties. Therefore, the predicted measurement ;' is calculated as
follows:

1 = b () 37)
2n,
A[m Z W [i][m] (38)
The weighted deviations
o = VW (ﬁii][m] _ %m]) 7 i=1,...,2n, (39)
are used to derive
St = ar [ o on, VR (40)

where R;_; is the measurement noise variance, and it is con-
sidered as an additive term instead of the augmented term [4].

5Hml s the propagated measurement by ITUKF where h(-)

denotes the measurement function. S[ZT]
matrix of the covariance matrix of 2t[m] . For adjusting the noises,

the residual of the observation is first calculated

I — (41)

is the upper triangular

The average residual 7; and its covariance f’m are then pro-
vided by

7= 72 il (42)
= m m] T
PTJ = - Z t+1 q( Tevi q) (43)

where ¢ is the length of the time window. The process noise and
measurement noise can be adjusted as

Ri=(1+MNRi1, Q=(1+21)Q:-1.

According to the adjusted noises, the square root covariance

Q[ZT] should be recalculated as (40), and the modified process
noise is propagated to the next period.

(44)



3588

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 66, NO. 5, MAY 2019

The cross covariance is found just as in the UKF
2n,

Pl = S (57— ) (- )

The Kalman gain matrix and measurement update are given

(45)

by
K" = (Pl /si) / (st)" (46)
s = st K[ (2 - 2 )
U=k (SL’;‘])T 48)
M!" = cholupdate {Mm_l U, —1} (49)
P = (Mﬁm])TMfs’"] (50)

[m]

where z; is the observation input, s; ' is the state mean, and

Mt[m] is the upper triangular decomposition of the covariance
matrix. The function cholupdate (-) transforms the Cholesky
decomposition of a matrix A into the Cholesky decomposition
of the matrix A + X X7 where X is a column vector. For the
Gaussian distribution, the state of each particle is sampled by

s™ o N (gﬁm],PL’“}) . (51)
B. Feature Update

If a landmark n;, is revisited at time ¢, then the sigma points

[m]

are defined using the previously registered mean y,, , , and
covariance Z,Z”, | as follows:
oI = (@ )T =12 (52)

where Qk:l'}t_l is the upper triangular decomposition of the
feature covariance matrix, and n is the dimension of the feature
state. If landmarks are on a planar environment, n = 2. The
sigma points are propagated through the measurement model as
follows:

Zt[i][m] —h ((5[ ][m] 2‘m]) (53)
2n

oy Z w, 21" (54)

7=/ W, (Zt“””” _ fL””) C i=1,....2n (55

S[Fi'] =qr {'rl Ty ... Top \/Rt} (56)

where sz[fm] is the current robot state of the mth particle and

W, =1/(2n).

The cross-covariance _/_X[;TJI and the Kalman gain are calcu-
lated by

2n

Al = ZW (o0 — )y
m 7( 27:1g[/srrb)/( m])

The mean and the square root of covariance of the feature are
updated as

m})T (57)

N—
/N
N
=
I
>

(58)

TRETREES <N CE vl (59)
_ — T

U-K"(sp) (60)

Q" = cholupdate{m },U,—l}. 61)

C. Calculating the Importance Weights

Like the UFastSLAM, the importance weight should consider
the latest observation, and it is given by [17]

. [m]
wt[m] ) wgﬂp (ZtSJtV ()gfmg’ Py)'jt) 1,w)

where N () denotes the Gaussian distribution. Equation (62)
comes from (5), and the detailed derivation can refer to [17],
and 25]. A general problem of PF is the degraded particles that
have small weights. The degeneracy degree of the PF is judged
by the effective particle number N provided by [17]

1
E]M_l (wt[m] ) 2
where M is the number of particles and uﬁim] is the normalized
weight of the mth particle. If the effective number is smaller
than the preset threshold, the resampling step will be executed
to mitigate the degeneracy of the PF. Hopefully, the filter will

obtain the independent identically distributed particles with the
same weight after resampling.

(62)

Negr = (63)

D. Adaptive GA Resampling

In this section, a well-performed GA is first introduced [25],
which works by merging the large-weight and small-weight par-
ticles during each period. Compared with the GA optimization,
the proposed resampling is only carried out when the effective
particle number is less than the specified threshold. Moreover,
the coefficients of two fundamental GA operators, crossover and
mutation, are provided according to the distribution of particle
weights.

1) GA Optimization: The particle set {s\"!, @™} is first
divided into two parts with a separating threshold W based

~[m]

on the importance weights. Sort the particle we1ghts w; ' (m o=

1,..., M) inadescending order as © = {wt ,71)?], o ,ﬁ)y\ﬂ}

where ©(m) represents the mth weight in the set ©. The
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Algorithm 1: ITUFastSLAM the modified particles sl’, ¢ according to a probability as
Input: SOaPOaztaMaROaQO . 281{[{ _Si.CW 7 Sp]\’[
Result: s;, 1, by = b : (67)
St.0» T > PM

Initialize particle weights to 1/M
STEPI:
fori=1:M
Importance sampling by ITUKF:
1) Predict the vehicle state using (29)—(36).
2) Update the vehicle state using (37)—(51) where the
modified noises (44) are calculated according to the
fuzzy rule provided by Table I and Fig. 1, and (40)
should be recalculated to update the state.
Feature Update:
3) Update the location of features using (52)—(61).
end for
STEP2: Calculate the particle weights
1) Calculate the particle weights using (62) and normalize
weights, and then calculate the effective number of
particles using (63).
if Nog <threshold, go STEP3.
else reset particle weights to 1/M and calculate the
weighted mean of vehicle and features states; go STEPI.
end if
STEP3: Perform adaptive genetic resampling
1) Use crossover and mutation operators (66), (67) where
the crossover coefficients and mutation probability are
given by (68) and (69) to modify the vehicle state.
2) Reset particle weights to 1/M and calculate the weighted
mean of vehicle and features states; go STEPI.

segmentation threshold W7 is given by

Wr =6 (Negr) (64)

where N,g = round [N,g] and the operator round [-] denotes
the rounding symbol. The divided particles can be consequently
expressed as

(m] Cr, " < Wy
S €
Cy, o™ >wy

where C7, and Cy denote the small-weight and large-weight
particle sets, respectively. Assume that s! ; and s. ,; represent

(65)

the particles from Cr, and Cjr, respectively. If si,c represents
the modified particles, the formulation of the crossover operator
is given by

550 =nspp+(1— Sty (66)
inwhichli=1,..., Npandj=1, ..., Ng. Ny and Ny de-
note the numbers of particles contained in Cj, and C'y, respec-
tively. For each Sé7c, sﬁ g 1s randomly selected from the set
Cy. The parameter 7 € [0, 1] represents the crossover degree
of the particles. A mutation operator is performed to further
promote the diversity of the particles. This step may happen on

where r; is a random variable drawn from the uniform distri-
bution on [0,1]. pas is the mutation probability, and sé M 1S
the mutated particle set. It is noted that the particle is not only
modified by the parent particles but also by the same generation.

2) Adaptive Coefficients: Generally, the parameters of the
crossover degree n and mutation probability py; are tuned ac-
cording to different systems. Here, from the perspective of prob-
ability, an adaptive selection method for these two parameters
is proposed. For a set of numbers (normalized weights) varied
within [0,1], its variance is within the range of [0,1/4] [26]. It is
approved that the smaller the variance of particle weights, the
better the particles approximate the true posterior distribution.
Hence, according to the variance o ? of the particle weights, a
linear function is used to decide the relationship between 7 and
o 2, and it is given by

n=1-40". (68)

When o 2 is equal to 0, the parameter = 1, which means
no crossover occurs. On the contrary, when o ? is equal to 1/4,
1 is 0, which means the greater degree crossover is needed
to mitigate the degeneracy and impoverishment problems. The
mutation probability p,; is given by

m) ~[m)
(Pwax —Pmin) (0" —0,", 0 )
T ] )
t.max Wi avg

Pmax — wzg/m] > wy’?ltlg
M = ’
o™ ~[m]
t — Wt,avg
(69)
where pa.x and pnin denote the maximum and the minimum

mutation probability, respectively. Generally, py,;, = 0.005 and
Pmax = 0.01 [271. &), and @]

,avg

pmax>

denote the maximum and

average weights ranked in the set W, respectively. @™ denotes

the weight of the modified particle z} .. When w£771’] > w,[yzlg
a lower mutation probability is preferred because the modified
particle tends to a higher posterior probability region compared
with the particle which has the weight of w," < w,{”;lg When
u*)l[/m] is lower than w%lvg, a higher mutation probability py, .y
is suggested to overcome the impoverishment problem of the
particles. Finally, the particles can be updated and their weights
should be initialized.

The implementation of the proposed algorithm is demon-
strated in Algorithm 1.

V. RESULTS OF SIMULATION AND EXPERIMENT

The proposed algorithm is first evaluated in the simulator
provided by Bailey [21], and then verified with the real-world
datasets of Car Park and Victoria Park, respectively [22]. To
better demonstrate the performance of the proposed method,
it is compared with the unscented FastSLAM (UFastSLAM)
[4] and the transformed unscented FastSLAM (TUFastSLAM),
which employs the TUKF as importance sampling function with
a systematic resampling.
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(particle number: 10, measurement noise: o, = 0.8 m, gy = 3.0°).

A. Simulation Results

In the simulator, the robot moves at a speed of 3 m/s with a
maximum steering angle of 30°. Moreover, the robot has a 4-m
wheel base and a range-bearing sensor with a maximum range of
20-m and a 180° frontal view. The kinematic and measurement
models are provided in [4] where the location and azimuthal
angle of the vehicle are the state variables, and the distance
and relative azimuthal angle of the observed feature are the
measurement variables. Fig. 3 demonstrates the true trajectory
of the robot and landmarks location of the test environment.
The control and observation frequencies are set at 40 Hz and
5 Hz, respectively. For each test, the results are obtained over 30
Monte Carlo runs, and the data association is assumed known
over the entire process. The length of time window given in (42)
and (43) is set to 3.

1) Performance of the Proposed Fuzzy Noise Estimator:
This part demonstrates the performance of the proposed FNE
compared with the STF [5], FIS [12] and MPAW [13], respec-
tively. Fig. 4 demonstrates the root-mean-square error (RMSE)
and consuming time of four algorithms of noise adjustment.
Compared with the STF and FIS, the proposed FNE spends
nearly the same time but has a smaller RMSE by 26.7% and
31.3%, respectively. This is because the FNE not only considers
the effect of residual but also its related covariance. In contrast

since it can be easily operated by referring to the fuzzy rule
table instead of complicated iteration of maximum posterior es-
timation [13]. Above all, the proposed FNE is suitable for the
real-time applications in which the estimation accuracy should
also meet the specified requirement.

2) Performance of Adaptive Genetic Resampling: To
better highlight the performance, the adaptive genetic re-
sampling is tested compared with the GA optimization and
(n = 0.1, pyr = 0.5) [25] and systematic resampling [15]. The
RMSE and the total cost time of the proposed method are pre-
sented in Fig. 5, respectively. It can be seen that using the
adaptive genetic resampling can help improve the estimation
accuracy compared with that with GA optimization by 29.4%,
28.6%, and 14.3% with 10, 20, and 30 particles, respectively.
This is because the crossover and mutation coefficients, which
should be empirically tuned in GA optimization, are calculated
according to the distribution of weights of particles. In this way,
the proposed resampling can better approximate the true state of
the vehicle. Moreover, the proposed resampling can also reduce
the computational time by 1.1%, 1.2%, and 1.5% when M = 10,
20, and 30, respectively, since the proposed resampling is only
carried out when the effective particles are less than the thresh-
old. Compared with the systematic resampling, the proposed
genetic resampling also presents better accuracy and computa-
tional efficiency. This is because it only conducts resampling on
partial particles and merges the large-weight and small-weight
particles to avoid repeatedly copying large-weight particles.

3) Performance Comparison With Different Measure-
ment Noise and Number of Particles: To test the performance
of the proposed algorithm, the preset condition is given under
different noise levels and the number of particles as shown in
Fig. 6, respectively. Fig. 6(a) and (b) illustrate the correspond-
ing RMSE of the estimated vehicle position and heading angle.
It is obvious that the mean and variance of RMSE increase
as the measurement noises increase for different algorithms.
Compared with the TUFastSLAM, the proposed method in-
creases the estimation accuracy of vehicle position by 38.9%,
37.5%, and 33.8% under measurement noise level A, B, and
C, respectively, because of the better proposal distribution and
resampling. For a different number of particles (M = 10, 20, and
30), the proposed ITUFastSLAM also presents better accuracy
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TABLE IlI
COMPOSITION OF THREE ALGORITHMS

Composition Importance sampling | Resampling

function
UFastSLAM UKF Systematic resampling
TUFastSLAM TUKF Systematic resampling
ITUFastSLAM | TUKF with square root | Adaptive GA resampling

filter and fuzzy noise

estimator

than the TUFastSLAM and UFastSLAM. It can be seen that
the ITUFastSLAM does not heavily depend on the number of
particles, and its accuracy increases by 9.3% and 8.1% when
the number of particles varies from 10 to 30. This is because
the adaptive GA resampling makes the particles tend to high
posterior probability region of the true state with no need for
numerous particles.

4) Computational Cost: The computational cost of the pro-
posed algorithm is analyzed using MATLAB simulations on
Intel(R) Core(TM) i5-4590 CPU@3.3GHz PC. The CPU run-
ning time of each SLAM algorithm is utilized to evaluate the
computational complexity. Table III demonstrates the compo-
sition of three algorithms. As shown in Fig. 6(d), the CPU
running time of three algorithms increases as the number of
particles increases. Under the specified particle number, ITU-
FastSLAM has better computational efficiency compared with
the TUFastSLAM. When the number of particles varies from 10
to 30, the proposed method reduces the CPU running time by
0.8%, 1.7%, and 3.0%, respectively. This result is a combined

30 . . .
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Fig. 7. Average NEES for UFastSLAM, TUFastSLAM, and the pro-

posed method. (Measurement noise: Level A; particle number: 30).

effect of the submodules in ITUFastSLAM. The square root
filter propagates the covariance with QR decomposition and re-
duces the computational complexity [5], [17]. Moreover, the
adaptive GA resampling only conducts on small-weight par-
ticles rather than all particles compared with the systematic
resampling [15]. In this way, the computational efficiency can
be improved. Although the FNE adds additional steps to the pro-
posed algorithm, the combined effect of the submodules makes
ITUFastSLAM have an improved computational efficiency than
TUFastSLAM. Combining the results in Section V-A-3), the
proposed algorithm has better accuracy and computational effi-
ciency than TUFastSLAM.

5) Filter Consistency of the Proposed Method: To verify
the consistency of the filter, the normalized estimation error
squared (NEES) is used [5], [17], and it is given by

gt = (St — §t)TP;1 (St — §t) (70)

where s;, §; and P, represent the ground truth, estimated mean,
and the covariance of the robot trajectory, respectively. Con-
sistency is evaluated by performing multiple Monte Carlo runs
and computing the average NEES. Given Ny runs, the average
NEES (ANESS) is computed as follows:

1 ZNR
&t = Eit-
Np “ !

i=1

For the three-dimensional (3-D) robot pose and 30 Monte
Carlo runs, the 95%-confidence level is bounded by interval
[2.36, 3.72]. The average ANEES of UFastSLAM, TUFast-
SLAM, and ITUFastSLAM is 9.3, 5.0, and 2.9 respectively;
therefore, the average ANEES of the proposed method is re-
duced by 42% and 69% than the TUFastSLAM and UFast-
SLAM, respectively. The distribution of ANEES is shown in
Fig. 7. In general, the consistency of the proposed method is
better than the UFastSLAM and the TUFastSLAM since it
almost locates within the preset confidence interval. This is
because the better proposal distribution is used in the algo-
rithm than that of the UFastSLAM and TUFastSLAM. Fur-
thermore, the intelligent GA resampling makes the particles

(71)
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well-approximate the posterior distribution of the true state and
maintains the diversity of the particles.

B. Experimental Results

The proposed algorithm is compared with the UFastSLAM
and the TUFastSLAM using the popular datasets collected in
Car Park and Victoria Park, respectively. The experimental plat-
form was a four-wheeled vehicle equipped with the wheel en-
coders (ROD-430), GPS (Ashtech GG24), and a laser radar
(SICK LMS 221). The wheel encoders are used to measure the
steering angle and velocity of the vehicle. The corresponding
standard deviations of the encoders are 7/30rad and 2 m/s, re-
spectively. The GPS provides the ground true of the vehicle,
and it is used for verifying the performance of the proposed
SLAM algorithm. The laser radar, which has a 180° frontal
field-of-view, is used to perceive the range and bearing angle of
the environmental features with the standard deviation of 1 m
and 7/60rad, respectively. The steel poles and trees are the
perceived features of laser radar in Car Park and Victoria Park,
respectively. The geometric parameters and equipped sensors of
the car are shown in Fig. 8. The speed of the vehicle is shown
in Fig. 9. The Ackerman model is selected as the process func-
tion for the proposed algorithm [22]. Moreover, the individual
compatibility nearest neighbor test with a 20 acceptance region
is used for data association of features.

In the two tests, the uneven terrain caused the wheel slip-
page and attitude errors, and thus induced poor odometry. Some
man-made landmarks consisted of 60-mm steel poles covered
with reflective tape were used to improve the observing accu-
racy in the Car Park. The vehicle was driven around the park
for about 30 min and travels over 4 km in the Victoria Park.
Due to the occlusion by foliage and buildings, the ground-true
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Fig. 10.  Comparison of GPS and estimated paths in Car Park. (Particle

number: 10). The black and blue lines denote the GPS and estimated
path of the vehicle, and “+” and “0” denote the true and estimated
positions of landmarks.
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Fig. 11. Comparison of the GPS path and the estimated paths of

UFastSLAM, TUFastSLAM, and the ITUFastSLAM with 10 particles. The
black and blue lines denote the GPS and estimated path of the vehicle.

position of the vehicle was not available throughout the exper-
iment but enough to verify the positioning accuracy. Figs. 10
and 11 demonstrate the GPS and estimated vehicle paths in Car
Park and Victoria Park, respectively. Because of the randomness
in importance sampling by (51), different vehicle paths will be
acquired in each test even if the test condition is unchanged.
Therefore, the superiority of the proposed algorithm should be
verified using a certain number of Monte Carlo tests. Table IV
provides the RMSE of the vehicle position and running time of
the proposed algorithm compared with the TUFastSLAM and



LIN et al.: IMPROVED TRANSFORMED UNSCENTED FASTSLAM WITH ADAPTIVE GENETIC RESAMPLING

3593

TABLE IV
RMSE oF VEHICLE POSITION AND CPU RUNNING TIME OF THREE
ALGORITHMS
Dataset In Car Park In Victoria Park

Algorithm RMSE (m) | Cost time (s) RMSE (m) | Cost time (s)
UFastSLAM 0.66 40.1 12.1 181.4
TUFastSLAM 0.47 44.5 8.2 208.3
ITUFastSLAM 0.29 42.2 5.3 189.9

UFastSLAM with 30 Monte Carlo runs. The test result demon-
strates that ITUFastSLAM improves the positioning accuracy
of the vehicle by 38.3% and 35.4% compared with the TUFast-
SLAM in Car Park and Victoria Park, respectively. This result
is in agreement with the comparisons in Figs. 10 and 11. More-
over, the proposed algorithm consumes less running time by
5.2% and 8.8% compared with the TUFastSLAM in Car Park
and Victoria Park, respectively. Therefore, the proposed SLAM
algorithm has better accuracy and computational efficiency than
that of the TUFastSLAM.

VI. CONCLUSION

This paper proposed the ITUFastSLAM with the adaptive
genetic resampling. This algorithm is a two-dimensional (2-D)
SLAM algorithm, which can be applied to the navigation of
mobile vehicles or robots, such as the unmanned aerial vehicles
and autonomous underwater vehicles. To apply the algorithm
to different scenarios, it is critical to establish a suitable pro-
cess state and measurement functions. A kinematic model is
generally selected as the process state function because many
odometry sensors, such as the accelerometer and compass, are
easily acquired. For the measurement function, it is generally
built according to the geometrical relationship between the data
(such as distance and azimuthal angle) acquired from front-end
sensors (such as laser, sonar, and camera) and the state of the
vehicle. It is approved that the more times the vehicle revisits
the map features in unit time, the more accurate navigation re-
sult is acquired. The speed of vehicle and number of particles
are two important parameters to the application of the proposed
algorithm. A higher speed of the vehicle will lead to fewer re-
observations in unit time, and thus reduces the estimation accu-
racy. To satisfy the required accuracy, more particles are needed.
However, it adds the CPU processing time and thus reduces the
amount of processing information in unit time. Considered this
correlation, it is preferred to limit the highest vehicle speed to
guarantee the required navigation accuracy. The proposed al-
gorithm can also be applied to a 3-D scenario by augmenting
the vehicle and measurement states. The main challenge of 3-D
SLAM is the extra computational burdens caused by updating
and registering 3-D features and updating the augmented vehi-
cle state. It requires a higher speed processing unit and larger
memory, especially in large-scale environments.

The main contributions of this paper are concluded as follows.

1) A FNE was proposed to adjust the state and measurement
noises of importance sampling function (ITUKF), and it
was proved to have higher accuracy than that of STF
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and FIS [11], [12] and a reduced computational burdens
compared with that of MPAW [13].

2) An adaptive genetic resampling was proposed to substi-
tute the conventional resampling, and it had a better es-
timation accuracy and computational efficiency than that
with GA optimization [25] and systematic resampling
[15].

3) An implementation of improved transformed unscented
FastSLAM was provided, and the whole algorithm had
better accuracy and computational efficiency than TU-
FastSLAM.
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